Estimate conditional effects with generalized linear mixed-effects models
fit_glmm.Rd
Estimate conditional effects with generalized linear mixed-effects models. Data must be in long format.
Examples
# Load repeated measures of adolescent tooth growth (must be of long format)
data <- read.csv("https://raw.githubusercontent.com/alejandroh3005/modelLong/main/data/ortho.csv")[-1]
# Fit a GLMM model of adolescent tooth growth from age and sex
mod_glmm <- modelLong::fit_glmm(
data = data,
formula = formula(distance ~ age + Sex + (1 | Subject)),
family = gaussian)
#> Loading required package: Matrix
#> Warning: calling glmer() with family=gaussian (identity link) as a shortcut to lmer() is deprecated; please call lmer() directly
# Fitted coefficients
coef(mod_glmm$fit)
#> $Subject
#> (Intercept) age SexMale
#> F01 16.44088 0.4263492 2.737311
#> F02 17.96976 0.4263492 2.737311
#> F03 18.53544 0.4263492 2.737311
#> F04 19.46805 0.4263492 2.737311
#> F05 17.64869 0.4263492 2.737311
#> F06 16.19626 0.4263492 2.737311
#> F07 18.06149 0.4263492 2.737311
#> F08 18.15322 0.4263492 2.737311
#> F09 15.81404 0.4263492 2.737311
#> F10 13.39842 0.4263492 2.737311
#> F11 21.37915 0.4263492 2.737311
#> M01 20.36644 0.4263492 2.737311
#> M02 15.82568 0.4263492 2.737311
#> M03 17.43100 0.4263492 2.737311
#> M04 18.47064 0.4263492 2.737311
#> M05 16.39137 0.4263492 2.737311
#> M06 18.66939 0.4263492 2.737311
#> M07 15.71866 0.4263492 2.737311
#> M08 16.19261 0.4263492 2.737311
#> M09 17.55331 0.4263492 2.737311
#> M10 21.91060 0.4263492 2.737311
#> M11 16.13146 0.4263492 2.737311
#> M12 17.03349 0.4263492 2.737311
#> M13 17.59918 0.4263492 2.737311
#> M14 17.09465 0.4263492 2.737311
#> M15 18.74583 0.4263492 2.737311
#> M16 15.68808 0.4263492 2.737311
#>
#> attr(,"class")
#> [1] "coef.mer"
# Full model
mod_glmm$fit
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: distance ~ age + Sex + (1 | Subject)
#> Data: data
#> REML criterion at convergence: 648.4082
#> Random effects:
#> Groups Name Std.Dev.
#> Subject (Intercept) 1.974
#> Residual 1.452
#> Number of obs: 162, groups: Subject, 27
#> Fixed Effects:
#> (Intercept) age SexMale
#> 17.5514 0.4263 2.7373