Estimate marginal effects with generalized estimating equations
fit_gee.Rd
Estimate marginal effects with generalized estimating equations. Data must be in long format.
Examples
# Load repeated measures of adolescent tooth growth (must be of long format)
data <- read.csv("https://raw.githubusercontent.com/alejandroh3005/modelLong/main/data/ortho.csv")[-1]
# Define subject/cluster ID
id <- as.factor(data$Subject)
# Fit a GEE model of adolescent tooth growth from age and sex
mod_gee <- modelLong::fit_gee(
data = data,
formula = formula(distance ~ age + Sex),
id = id,
family = gaussian(),
corstr = "independence")
# Fitted coefficients
coef(mod_gee$fit)
#> (Intercept) age SexMale
#> 17.5513997 0.4263492 2.7373106
# Full model
mod_gee$fit
#>
#> Call:
#> geepack::geeglm(formula = formula, family = family, data = data,
#> id = id, corstr = corstr)
#>
#> Coefficients:
#> (Intercept) age SexMale
#> 17.5513997 0.4263492 2.7373106
#>
#> Degrees of Freedom: 162 Total (i.e. Null); 159 Residual
#>
#> Scale Link: identity
#> Estimated Scale Parameters: [1] 5.67822
#>
#> Correlation: Structure = independence
#> Number of clusters: 162 Maximum cluster size: 1
#>